skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Islam, Kazi Ashik"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract—Evacuation planning methods aim to design routes and schedules to relocate people to safety in the event of natural or man-made disasters. The primary goal is to minimize casualties which often requires the evacuation process to be completed as soon as possible. In this paper, we present QueST, an agent-based discrete event queuing network simulation system, and STEERS, an iterative routing algorithm that uses QueST for designing and evaluating large scale evacuation plans in terms of total egress time and congestion/bottlenecks occurring during evacuation. We use the Houston Metropolitan Area, which consists of nine US counties and spans an area of 9,444 square miles as a case study, and compare the performance of STEERS with two existing route planning methods. We find that STEERS is either better or comparable to these methods in terms of total evacuation time and congestion faced by the evacuees. We also analyze the large volume of data generated by the simulation process to gain insights about the scenarios arising from following the evacuation routes prescribed by these methods. 
    more » « less